
This article was downloaded by: [University of Otago]
On: 01 September 2015, At: 17:13
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place,
London, SW1P 1WG

Click for updates

Communications in Statistics - Simulation and
Computation
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lssp20

Optimal Direction Gibbs Sampler for Truncated
Multivariate Normal Distributions
J. Andrés Christena, Colin Foxb & Mario Santana-Cibrianc

a Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Gto., Mexico
b Department of Physics, University of Otago Dunedin, New Zealand
c Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Gto., Mexico
Accepted author version posted online: 30 Jun 2015.

To cite this article: J. Andrés Christen, Colin Fox & Mario Santana-Cibrian (2015): Optimal Direction Gibbs Sampler
for Truncated Multivariate Normal Distributions, Communications in Statistics - Simulation and Computation, DOI:
10.1080/03610918.2015.1053926

To link to this article:  http://dx.doi.org/10.1080/03610918.2015.1053926

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service
to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting,
typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of
the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2015.1053926&domain=pdf&date_stamp=2015-06-30
http://www.tandfonline.com/loi/lssp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610918.2015.1053926
http://dx.doi.org/10.1080/03610918.2015.1053926
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


ACCEPTED MANUSCRIPT

Optimal Direction Gibbs Sampler for Truncated
Multivariate Normal Distributions
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Guanajuato, Gto., Mexico
mariosc@cimat.mx

Abstract

Generalized Gibbs samplers simulate from any direction, not necessarily limited to the

coordinate directions of the parameters of the objective function. We study how to optimally

choose such directions in a random scan Gibbs sampler setting. We consider that optimal

directions will be those that minimize the Kullback-Leibler divergence of two Markov chain

Monte Carlo steps. Two distributions over direction are proposed for the multivariate Normal

objective function. The resulting algorithms are used to simulate from a truncated multivariate

Normal distribution, and the performance of our algorithms is compared with the performance

of two algorithms based on the Gibbs sampler.

Keywords: Bayesian inference; MCMC; Gibbs sampler; Simulation, Truncated multivariate

Normal
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1 Introduction

The Gibbs sampler is a Markov chain Monte Carlo (MCMC) simulation algorithm that sequen-

tially samples from the conditional distributions over subspaces of the full target distribution space.

Traditionally, each subspace is chosen by selecting one variable in the target distribution and sim-

ulating from the corresponding “full conditional” distribution. The standard Gibbs sampler then

systematically samples from all full conditionals to create an irreducible Markov chain; this is the

algorithm presented to the Bayesian world in Gelfand and Smith (1990) that initiated the MCMC

boom in statistics, although MCMC was already developed in the 1970’s (Hastings, 1970; Peskun,

1973). The traditional Gibbs sampler may then be seen as choosing a canonical direction, i.e., se-

lecting a variable to move and simulating from the (full) conditional distribution along that direc-

tion. The standard Gibbs sampler only considers directions given by the basis chosen to represent

the objective distribution.

A natural question to ask is whether we may take any other direction in the Gibbs sampler and

certainly how then to decide which direction to take. Arbitrary directions may indeed be selected,

with a new point of the Markov chain chosen by simulating from the conditional distribution along

that direction (Liu, 2008). However, it is not clear how to choose such directions and what criterion

to use to optimize the resulting chain. Here we address this problem by trying to reduce the

dependence in the chain, thereby obtaining more quasi-independent samples with fewer iterations.

We use the mutual information (Cover and Thomas, 1991) between two consecutive samples of

the Markov chain to measure dependence. To our knowledge, this is a score seldom used in this

context.

Our goal is to use the resulting algorithm to sample from a truncated multivariate Normal

(TMVN) distribution. This is an important task in many research areas in statistics such as

Bayesian Normal linear regression subject to linear inequality restrictions (Rodriguez-Yam et al.,

2004), censored data models (Gelfand et al., 1992), order restricted (or isotonic) regressions (Robert,
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1995), truncated multivariate probit models in market research (Yu and Tian, 2011), and so on.

TMVN sampling is also common in inverse problems, when estimating parameters in a stable sys-

tem of differential equations leads to the linear problemBx = y, but natural restrictions on the

parameter space, such as a positivity constraintx ≥ 0, result in a truncated multivariate Normal

posterior distribution (Calvetti et al., 2008; Kaipio and Somersalo, 2004).

There are several methods for sampling from a TMVN (Breslaw, 1994; Kotecha and Djuric,

1999; Damien and Walker, 2001; Robert, 1995; Yu and Tian, 2011). However, the most common

and easiest to implement methods are based on the Gibbs sampler. These methods work well in

many situations but may be very slow if we have high correlation as well as high dimensionality.

We will show that our algorithm is especially suited for these difficult cases.

The paper is organized as follows. In Section 2 we present the directional Gibbs sampler and

the optimality criterion. In Section 3 we present the proposed algorithm for the case where the

target distribution is a multivariate Normal (MVN) distribution. Section 4 proposes a variant of

the algorithm to sample from the TMVN. In section 5 the performance of the algorithms are eval-

uated in several examples and also compared with two existing Gibbs samplers. Finally, Section 6

presents a discussion of our results.

2 Generalized Gibbs sampler

Let π be the objective distribution, e.g. the posterior distribution of interest. LetX ∈ Rn be a

random variable with densityπ(x). The component-wise Gibbs sampler is a MCMC sampling

algorithm that simulates systematically or randomly from the conditional distributions

fXi |X−i (xi |x−i) ∝ π(x), (1)

where the notation

v−i = (v1, . . . , vi−1, vi+1, . . . , vn)
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represents the (n − 1)-dimensional vector created by deleting thei-th entry from then-dimension

vectorv. Equation (1) represents univariate distributions that are the conditional distributions along

the axis for the basis chosen to representX, the so called “full conditional distributions” (Robert

and Casella, 2004).

Using (1), a Markov chainX(1), X(2), . . . is created with transition kernel

Ki(x(t), x(t+1)) = fXi |X−i (x
(t+1)
i |x(t)

−i )1(x(t+1)
−i = x(t)

−i ).

That is, thei-th kernel changes only thei-th coordinate by simulating from the full conditional

distribution fXi |X−i (∙|x
(t)
−i ). In random scan Gibbs, the complete transition kernel is defined by

K(x, y) =
n∑

i=1

wiKi(x, y),

for some weightswi ≥ 0,
∑n

i=1 wi = 1; we prefer a random scan since it creates a reversible Markov

chain leading to many desirable analytical properties (Geyer, 1992).

The direction Gibbs sampler generalizes this idea by choosing a directione ∈ Rn, ||e|| = 1, and

sampling from the conditional distribution along that direction. This can be written as

X(t+1) = x(t) + re,

where the lengthr ∈ R has distribution proportional toπ(x(t) + re) (Liu, 2008). It can be seen

that the transition kernel is in detailed balance withπ and, by assuringπ-irreducibility, the Markov

chain hasπ as ergodic distribution. The natural question to ask is how to choosee to optimize the

convergence (mixing) of the Markov chain? Indeed, once irreducibility is assured, any chain will

have the correct ergodic distributionπ but performance will depend on how dependent areX(t+1)

and X(t). In this context, a convenient, although less known dependence measure, is themutual

information Ibetween random variablesX andY (Cover and Thomas, 1991), which measures the

Kullback-Leibler divergence between the joint modelfX,Y and the independent alternativefX fY,
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that is,

I (Y, X) =
∫ ∫

fY,X(y, x) log
fY,X(y, x)
fY(y) fX(x)

dxdy.

In our case, we haveX = X(t) andY = X(t+1). Assuming thatX ∼ π, we see thatfY(y) = π(y) and

fY,X(y, x) = π(x)K(x, y). Therefore, the mutual information above may be calculated as

I (Y, X) =
∫ ∫

π(x)K(x, y) log
K(x, y)
π(y)

dydx. (2)

The idea is to choose directions for whichI (X(t+1), X(t)) is minimized. SinceI is a Kullback-Leibler

divergence it is well defined;I ≥ 0 andI = 0 if and only if X(t+1) and X(t) are independent, i.e.

fX,Y = fX fY a.s.. Finding directionse for which I is minimum will provide our optimization

criterion to obtain optimal direction Gibbs samplers.

3 The multivariate Normal case

In this section we will assumeπ to be a multivariate Normal distribution with mean column vector

μ andn × n precisionmatrix A, which is the inverse of the variance-covariance matrix. This is a

case that lends itself to calculation ofI (X(t+1), X(t)).

As explained in Section 2, given statex and directione ∈ Rn, ||e|| = 1, the chain moves from

X(t) = x to

Y = X(t+1) = x + re

wherer ∈ R has probability density functiong proportional toπ(x + re). That is,

g(r |e, x) ∝ exp

{

−
1
2

(v+ re)T A(v+ re)

}

wherev = x − μ. After some algebra we see that

r |e, x ∼ N

(

−
eT Av
eT Ae

,eT Ae
)

in which theprecision is eTAe. By settinge = ei, the i-th standard basis vector, one obtains
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Yi ∼ N
(
μi − A−1

ii Ai,−i(x−i − μ−i), Aii

)
, which is the full conditional distribution for a multivariate

Normal distribution for entryi, thus returning to the usual Gibbs sampler.

From this we see that the transition kernel corresponding to directione is

Ke(x, y) =

(
eT Ae
2π

) 1
2

exp




−

eT Ae
2

(

eT(y− x) +
eT Av
eT Ae

)2




1(y = x + eT(y− x)e).

Note thaty− x = reand, sinceeTe= 1, r = eT(y− x), y is restricted to the liney = x + eT(y− x)e.

The mutual informationIe(X(t+1), X(t)) of the Gibbs sampler given directione, as in (2) is then

Ie(X(t+1), X(t)) = C +
1
2

logeT Ae, (3)

whereC is a constant that does not depend one. See Appendix A for further details of the calcu-

lation of Ie.

3.1 Choosing a set of directions

We need now a distributionh for directions to be chosen to generate anirreducibleGibbs sampler.

According to (3) the best direction is the one that minimizesC + 1
2 logeT Ae. However, we cannot

simply choose the best direction as the resulting algorithm will not be irreducible and clearly we

will not be sampling fromπ. The chain must beπ-irreducible in order to have ergodic distribution

π. Indeed, if directions have distributionh with support in the whole sphereSn, then the resulting

Markov chain is irreducible with transition kernel given by

K(x, y) =
∫

Ke(x, y)h(e)de.

An alternative will be to actually optimize over the set of all possible direction distributionsh

that generate irreducible chains. However, this formulation is far less convenient and involves

a complex optimization over a function space. Instead we follow a more heuristic approach, as

explained below.
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Kaufman and Smith (1998) argue that an optimal direction distribution is

h(e) ∝ sup
x∈X,r∈R

{∫
π(x + τe)dτ

|r |n−1

π(x + re)

}

,

in the sense of optimizing the geometric rate of convergence of the resulting Gibbs sampler. How-

ever, this only applies forπ with bounded supportX. Little else has been said regarding the

optimal directions for generalized Gibbs samplers. In general we cannot control the term|r |n−1

π(x+re)

for unbounded support. However, this suggests choosing the direction distribution

h(e) ∝ sup
x∈Rn

{∫
π(x + τe)dτ

}

.

For the Normal case, it is not difficult to see that

∫
π(x + τe)dτ ≤

|A|
1
2

(2π)(n−1)/2(eT Ae)1/2
exp




−

1
2

(
eT A(x − μ)

)2

eT Ae




.

Maximizing overx, i.e. for x = μ, we obtain the direction distribution

h1(e) ∝ (eT Ae)−
1
2 .

Note that one can minimizeIe(X(t+1), X(t)) by maximizing exp{−Ie(X(t+1), X(t))}. Then, choosing

h1(e) ∝ (eT Ae)−
1
2 will naturally choose directions with lowIe(X(t+1), X(t)), as can be seen from (3).

To sample fromh1, first note that

h1(e) ∝
∫
π(μ + τe)dτ ∝ (eT Ae)−

1
2 .

If we simulateeu from a multivariate Normal centred at the origin with precision matrixA, and

takee = eu/||eu||, it is clear thate ∼ h1. This density has the whole sphereSn as its support and

thus results in an ergodic chain. This justifies the choice of direction distribution made by Calvetti

et al. (2008).

We also entertain an alternative direction distribution, as follows. Take the directionse as the
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eigenvectors of the precision matrixA, soe ∈ {e1,e2, . . . , en}. The i-th direction will be selected

with probability proportional toλ−b
i , whereλi is the eigenvalue corresponding to thei-th eigenvec-

tor , i = 1,2, . . . , n, andb is a random variable with distributionBeta(α, β). Then

h2(ei) = k (λi)
−b ,

wherek =
(∑n

i=1 λ
−b
i

)−1
. It is easy to see that directionen corresponding to the lowest eigenvalueλn

of A is optimal. Note that

min
‖e‖=1

Ie

(
X(t+1), X(t)

)
= min
‖e‖=1

{

C +
1
2

log
(
eTH(x)e

)}

= C +
1
2

log

(

min
‖e‖=1

{
eTH(x)e

})

= C +
1
2

logλn.

The minimum is reached whene= en, the eigenvector associated toλn.

Since all eigenvectors have a positive probability of being chosen, and these form a basis forRn,

the resulting direction Gibbs sampler will be ergodic. In this case the distribution ofe is discrete

which may result in computational advantages.

The resulting algorithm works as follows: AtX(t) = x,

• Propose a directione from hi; i = 1,2.

• Propose a lengthr from aN(μr , τr), with meanμr = −
eT A(x − μ)

eT Ae
and precisionτr = eT Ae.

• SetX(t+1) = x + re.

Note that so far nothing has been achieved since sampling from a multivariate Normal distri-

bution requires several samples from basically the same multivariate Normal. Rather, our aim is

to produce an efficient sampler when we have a truncated multivariate Normal, as explained in the

following.
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4 Truncated multivariate Normal distribution

Suppose we have a multivariate Normal distributionπ with precision (n × n) matrix A and mean

vectorμ but truncate the support toxi ∈ (ai ,bi), −∞ ≤ ai < bi ≤ ∞, i = 1, . . . , n. The probability

density function of this TMVN can be written succinctly as

π(x) =
exp

{
−1

2(x − μ)T A(x − μ)
}

∫ b

a
exp

{
−1

2(x − μ)T A(x − μ)
}
dx
.

Sampling from this TMVN can be done in a very simple way using a naive rejection algorithm:

sampling from the corresponding full multivariate Normal and then keep only the samples that

satisfyxi ∈ (ai ,bi),∀i ∈ 1, . . . , n. However, this approach will be very inefficient in many cases.

Most of the available methods to sample from a TMVN are based on the Gibbs sampler.

Kotecha and Djuric (1999) use the fact that the full conditional distributions of a truncated mul-

tivariate Normal are truncated univariate Normal distributions. Hence Gibbs sampling requires

simulating from one-dimensional truncated Normal distributions which can be done in a very sim-

ple and efficient manner (Robert, 1995; Kotecha and Djuric, 1999). An interesting scheme is pre-

sented by Damien and Walker (2001) who use a slice sampler. This is essentially a Gibbs sampler

over a space augmented by one variable that turns the full conditional distributions into uniform

distributions.

In this section we will show that the algorithm presented in Section 3 may be used to sample

from the TMVN distribution with some minor changes.

As mentioned before, we can sample from the MVN by selecting a directioneand the step size

r which producesX(t+1) = x+ re. Note that, for the TMVN, it is required thata < x+ re< b; then

ai < xi + rei < bi ∀i ∈ {1, . . . , n}. This puts constraints overr of the form





ai − xi

ei
< r <

bi − xi

ei
∀ei > 0,

bi − xi

ei
< r <

ai − xi

ei
∀ei < 0.
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We do not need to worry about the caseei = 0 since it puts no restriction overr, since thei-th

coordinate is not being changed. By takingr ∈ (c,d), with

c = max

({
ai − xi

ei
: ei > 0

}

∪

{
bi − xi

ei
: ei < 0

})

, (4)

d = min

({
ai − xi

ei
: ei < 0

}

∪

{
bi − xi

ei
: ei > 0

})

, (5)

we guarantee thata < X(t+1) < b. Since we already know thatr |e, x(t) follows a Normal distribution,

then the restrictionr ∈ (c,d) implies thatr |e, x(t), c,d follows a univariate truncated Normal (TN)

distribution.

The algorithm then proceeds as follows: AtX(t) = x,

• Propose a directione from hi, i = 1,2.

• Propose a lengthr from a TN(μr , τr , c,d), with meanμr = −
eT A(x − μ)

eT Ae
, precisionτr =

eT Ae, andc andd as in (4) and (5).

• SetX(t+1) = x + re.

We will refer to this algorithm as ODG1 or ODG2 when the direction distribution used ish1 or h2,

respectively.

More general constraints for the support of the TMVN may also be considered. For example,

the algorithm presented here can handle a set of linear inequality constraints that may be written

as BX < b. This is usually done by transforming the coordinates and changing the problem to

a
′
< X

′
< b

′
; once the sampling is done, the inverse transformation is performed to return to the

original coordinates (Rodriguez-Yam et al., 2004). We will not discuss this case in this paper since

it reduces the problem to the one we are already studying.
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5 Examples

In this Section we will compare the algorithms ODG1 and ODG2 with the Gibbs samplers pre-

sented in Kotecha and Djuric (1999) and Damien and Walker (2001) using several instances of

TMVN. We will refer to the last two algorithms as KD and DW, respectively.

Consider an-dimensional TMVN with mean vectorμ = (
√

1/n, . . . ,
√

1/n) and precision ma-

trix A, for n = 2,5,10,20. The support will be restricted toxi ≥ 0, i.e. all entries are positive.

It is important to note that the truncated support remains unbounded. We will not discuss how to

sample from a tightly bounded support since that would represent basically uniform sampling in a

complex domain, which is a substantially different sampling problem.

The precision matrix is obtained asA = PTΛ. Here,P is a random orthonormal matrix gen-

erated by using the QR decomposition of an× n matrix of uniform random entries;P represents

the orthonormal base of eigenvectors ofA. Furthermore,Λ is a diagonal matrix of the eigenvalues

λi = σ
−2
i . We set the standard deviations in each principal (eigen) direction toλ−1/2

i = σi = i−α/n.

These represent decreasing standard deviations and are increasingly contrasting asα increases;

α = 0 results in an uncorrelated distribution. More contrasting standard deviations result in further

correlated distributions.

We start by analyzing the casen = 2 to present some basic results and then we will show how

these results extend to higher dimensions. We run 5000 iterations of each algorithm starting from

μ, so there is no need for burn-in. Figure 1 shows the objective distributions forα = 0,5,10,20.

Black dots correspond to samples from the full bivariate Normal distribution while color dots

correspond to the samples from the TMVN obtained using each of the algorithms of interest. As

mentioned before, asα increases the correlation leads to more difficult simulation regions. It can be

seen that algorithms ODG1 and ODG2 perform well in all cases. Moreover, forα = 10, algorithms

DW and KD have great difficulties in exploring the whole region of interest after 5000 iterations.

Forα = 20, both KD and DW generate samples concentrated in a small region only.
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Figure 2 shows the estimated autocorrelation of each component of the TMVN. Note that for

the caseα = 0, algorithms KD and DW have less autocorrelation between samples than the ODG1

and ODG2, although the autocorrelation levels are still comparable. However, asα increases,

autocorrelation of KD and DW is far larger than for ODG1 and ODG2. This is the first indication

that ODG algorithms are more efficient in cases where correlation is high.

Since the algorithmic complexity in each case is different, in order to have a fair comparison we

want to calculate the average CPU-time needed to obtain a quasi-independent sample. We estimate

this by multiplying the average CPU time per iteration (CPUtime) byτ, the number of samples

needed to obtain one pseudo-independent sample. We often use the Integrated Autocorrelation

Time (IAT) (Geyer, 1992) to estimateτ. However, the IAT is not fully studied for non-reversible

chains, which is the case for algorithms KD and DW since they are systematic Gibbs samplers.

Instead, we calculate the Effective Sample Size (ESS) Liu (2008) and estimateτ as (m/ESS),

wherem is the length of the chain. Tables 1, 2, 3, 4 reports this quantities obtained from the

previous examples in the two-dimensional case.

Forα = 0, algorithms KD and DW are more efficient than ODG1 and ODG2 since CPUtime×τ

is lower. However, as correlation increases, algorithms ODG1 and ODG2 outperform the Gibbs

samplers, and in some cases by several orders of magnitude.

If we increase the dimensionality of the TMVN, the results are very similar. Tables 5, 6 and 7

show the values of CPUtime×τ for dimensionsn = 5,10,20 respectively. For eachn, we chooseα

such that the ratioλn/λ1, the maximum over the minimum eigenvalue ofA, which is the condition

number of the precision matrix, has the form 2k, for k = 0,5,10,20. For example, ifn = 5 we

get α = 0,5.4,10.8,21.5. This makes the examples in higher dimensions comparable with the

bivariate case.

For low correlations algorithms KD and DW are more efficient. It is important to notice that

their advantage in efficiency does not come from their CPUtime, but from low correlation levels

between samples. Note also that both algorithms are systematic Gibbs samplers which makes
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CPUtime increase linearly with dimension. Nevertheless, even in the case of low correlations, the

ODG algorithms remain fairy comparable in performance.

However, when correlation increases the ODG algorithms become more efficient and outper-

form the other choices. In this case, efficiency comes from both the low levels of correlation

between samples and also from low CPUtime.

6 Discussion

Our optimal direction Gibbs sampler presents interesting characteristics in examples where stan-

dard Gibbs samplers are known to be inefficient. One of the main advantages is that CPUtime per

iteration does not increase linearly with dimensionality. Also, the performance of our algorithms is

remarkable in cases where correlation is very high, which are the difficult and very often interesting

cases of study.

The ODG1 algorithm is more flexible since the direction distribution has the whole n-dimensional

sphere as support. However, ODG2 has a very good performance also. Note that we could simply

choose the parameterb of h2 as fixed instead of random. However, if within one specific region of

the objective distribution there exists one (or few) very contrasting eigenvalues, directions may get

trapped in one “corridor” of the density, as it is the case for the TMVN with very high correlation.

By takingb ∼ Beta(α, β) we allow for the chance of selecting eigenvector directions with relative

low eigenvalues, thus permitting better mixing and avoiding possible traps. In fact, potentially

these parameters could be optimized to obtain even better efficiency.

It is very difficult to parallelize an MCMC algorithm since it is sequential by construction.

Nevertheless, parallel computing can be use to accelerate some calculations inside the MCMC

steps, for example, those involved in likelihood evaluations (Tibbits et al., 2011). This could

be specially relevant in high dimensional examples. There are two specific steps where parallel

computing can be used in our algorithm: 1) to evaluate the bounds for length sizer presented in
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equations (4) and (5); 2) to calculate proposal parameters, which in turn reduces to matrix algebra

parallelization (Demmel et al., 2013). With the increasing availability of multi processor machines

parallelizing could strongly improve the speed of our algorithm. We leave this for future research.

There is still work to be done regarding the optimal direction distributions. As explained in

Section 3.1, an alternative would be to optimize over all possible direction distributions or, for

example, optimize theexpectedmutual information restricted to all possible direction distributions

that lead to irreducible chains. A challenging function optimization problem arises, defined with

a complex restriction, that may lead to very interesting practical and theoretical results. We leave

this investigation for future research.

There are several ideas to extend the actual ODG algorithms to non-Normal objective distri-

butions, for example by using a local Normal approximation to the target distribution. We have

experimented with this approach in some simple cases and seems to sample correctly from the ap-

propriate target distribution. Even so, this non-Gaussian ODG sampling is still work in progress.
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A Derivation of the mutual information

As mentioned in Section 2, the mutual information betweenX andY is given by

I (Y, X) =
∫ ∫

fY,X(y, x) log
fY,X(y, x)
fY(y) fX(x)

dxdy.

We want to calculateIe(X(t+1), X(t)), this is the mutual information betweenY = X(t+1) = X(t) + re

and X = X(t) restricted to directione. We supposeX ∼ π, whereπ is a multivariate Normal

distribution with mean vectorμ and precision matrixA.

In our casefY(y) = π(y) and fY,X(y, x) = π(x)Ke(x, y), with

Ke(x, y) =

(
eT Ae
2π

) 1
2

exp




−

eT Ae
2

(

eT(y− x) +
eT Av
eT Ae

)2




1(y = x + eT(y− x)e).

Therefore, the mutual information above can be calculated as

I (Y, X) =
∫ ∫

π(x)K(x, y) log
K(x, y)
π(y)

dydx. (6)

Consider first the logarithmic term in (6), this is

log
Ke(x, y)
π(y)

= C +
1
2

logeT Ae−
1
2

[
Q1(e, x, y) − Q2(y)

]
,

where

C =
n− 1

2
log 2π −

1
2

log |A| ,

Q1(e, x, y) = eT Ae
[

eT(y− x) +
eT Av
e′Ae

]2

,

Q2(y) = (y− μ)T A(y− μ).

From this we see that

∫
log

Ke(x, y)
π(y)

Ke(x, y)dy = C −
1
2
+

1
2

logeT Ae+
1
2

∫
Q2(y)Ke(x, y)dy

since
∫

Q1(e, x, y)Ke(x, y)dy = 1. The integral
∫

Q2(y)Ke(x, y)dy may be calculated by transform-
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ing back tor since

∫
Q2(y)Ke(x, y)dy =

∫
(re− v)T A(re− v)ge(r)dr.

After some algebra one sees that

∫
Q2(y)Ke(x, y)dy = 1−

vT AeeT Av
eT Ae

+ vT Av.

Then
∫

log
Ke(x, y)
π(y)

Ke(x, y)dy = C +
1
2

logeT Ae−
1
2

vT AeeT Av
eT Ae

+ vT Av.

We need now to integrate with respect toπ(dx). We note that
∫

vT Avπ(x)dx = n. Moreover, the

expected value of a quadratic form is

E[zTRz] = tr(RΣ) + μTRμ,

whereμ andΣ are the mean vector and the variance-covariance matrix ofz. LettingR = AeeT A
eT Ae and

sinceEπ(v) = 0 we obtain

Eπ

[

v′
Aee′A
e′Ae

v
]

=

∫
vT AeeT Av

eT Ae
π(x)d(x)

=
1

e′Ae
tr(Aee′AA−1)

=
1

e′Ae
tr(Aee′)

=
1

e′Ae
tr(eAe′)

= 1.

Therefore

Ie(X(t+1), X(t)) = C + n−
1
2
+

1
2

loge′Ae

= C1 +
1
2

loge′Ae,
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whereC1 = C + n− 1
2.
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ODG1 ODG2 KD DW
ESS 1799.7 1937.5 5082.3 3587.6
τ 2.8 2.6 1.0 1.4

CPUtime 0.00045 0.00032 0.00059 0.00013
CPUtime×τ 0.00125 0.00083 0.00058 0.00017

Table 1: Effective Sample Size (ESS) forα = 0; number of samples needed to get one pseudo-
independent sample (τ) and CPU time per iteration (CPUtime). Each quantity is the average
of 30 chains of 5000 iterations. CPUtime×τ represents the average time to obtain one pseudo-
independent sample. Numbers in bold indicate the most efficient algorithm.
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ODG1 ODG2 KD DW
ESS 2100.1 1908.6 1440.9 1301.4
τ 2.4 2.6 3.5 3.8

CPUtime 0.00045 0.00033 0.00059 0.00012
CPUtime×τ 0.00107 0.00087 0.00204 0.00048

Table 2: Effective Sample Size (ESS) forα = 5; number of samples needed to get one pseudo-
independent sample (τ) and CPU time per iteration (CPUtime). Each quantity is the average of 30
chains of 5000 iterations. CPUtime×τ represents the average time to get one pseudo-independent
sample. Numbers in bold indicate the most efficient algorithm.
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ODG1 ODG2 KD DW
ESS 2268.3 1932.1 55.0 49.8
τ 2.2 2.6 90.1 100.5

CPUtime 0.00044 0.00033 0.00057 0.00012
CPUtime×τ 0.00094 0.00084 0.05201 0.01217

Table 3: Effective Sample Size (ESS) forα = 10; number of samples needed to get one pseudo-
independent sample (τ) and CPU time per iteration (CPUtime). Each quantity is the average of 30
chains of 5000 iterations. CPUtime×τ represents the average time to get one pseudo-independent
sample. Numbers in bold indicate the most efficient algorithm.
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ODG1 ODG2 KD DW
ESS 22351.9 1946.1 9.3 10.7
τ 2.2 2.6 538.8 467.7

CPUtime 0.00043 0.00032 0.00056 0.00012
CPUtime×τ 0.00094 0.00082 0.30369 0.05584

Table 4: Effective Sample Size (ESS) forα = 20; number of samples needed to get one pseudo-
independent sample (τ) and CPU time per iteration (CPUtime). Each quantity is the average of 30
chains of 5000 iterations. CPUtime×τ represents the average time to get one pseudo-independent
sample. Numbers in bold indicate the most efficient algorithm.
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ODG1 ODG2 KD DW
α = 0 0.00465 0.00671 0.00145 0.00046
α = 5.4 0.00381 0.00313 0.00305 0.00071
α = 10.8 0.00341 0.00271 0.03727 0.00789
α = 21.5 0.00176 0.00261 0.50378 0.13555

Table 5: Average time to get one pseudo-independent sample (CPUtime×τ) for a five-dimensional
TMVN. Each quantity is the average of 30 chains of 5000 iterations. Numbers in bold indicate the
most efficient algorithm for a specific value ofα.
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ODG1 ODG2 KD DW
α = 0 0.0142 0.0129 0.0031 0.0011
α = 7.5 0.0112 0.0084 0.0049 0.0013
α = 15.1 0.0058 0.0062 0.0776 0.0178
α = 30.1 0.0036 0.0061 1.7291 0.3784

Table 6: Average time to get one pseudo-independent sample (CPUtime×τ) for a ten-dimensional
TMVN. Each quantity is the average of 30 chains of 5000 iterations. Numbers in bold indicate the
most efficient algorithm for a specific value ofα.
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ODG1 ODG2 KD DW
α = 0 0.0452 0.0462 0.0059 0.0027
α = 11.6 0.0413 0.0245 0.0077 0.0028
α = 23.1 0.0259 0.0151 0.0569 0.0166
α =46.3 0.0142 0.0127 3.5618 0.9832

Table 7: Average time to get one pseudo-independent sample (CPUtime×τ) for a 20-dimensional
TMVN. Each quantity is the average of 30 chains of 5000 iterations. Numbers in bold indicate the
most efficient algorithm for a specific value ofα.
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(a) (b)

(c) (d)

Figure 1: Samples of the full bivariate Normal distribution (black dots) and the TMVN with algo-
rithms ODG1 (blue), ODG2 (red), KD (green) and DW (orange) after 5000 iterations for a)α = 0,
b) α = 5, c)α = 10, and d)α = 20.
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(a) (b)

(c) (d)

Figure 2: Estimated autocorrelation for the chains generated with algorithms ODG1 (blue), ODG2
(red), KD (green) and DW (orange) for a)α = 0, b)α = 5, c)α = 10, and d)α = 20. In examples
c) and d), the autocorrelation for ODG1 and ODG2 is almost 0 after lag five.
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