This article was downloaded by: [University of Otago]

On: 01 September 2015, At: 17:13

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place,
London, SW1P 1WG

Communications in Statistics - Simulation and
Computation

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/Issp20

Optimal Direction Gibbs Sampler for Truncated
Multivariate Normal Distributions

— J. Andrés Christen?, Colin Fox” & Mario Santana-Cibrian®
& Centro de Investigacion en Matematicas, A.C. (CIMAT) Guanajuato, Gto., Mexico
b Department of Physics, University of Otago Dunedin, New Zealand
@ CrossMark
Click for updates

¢ Centro de Investigacién en Matematicas, A.C. (CIMAT) Guanajuato, Gto., Mexico
Accepted author version posted online: 30 Jun 2015.

To cite this article: J. Andrés Christen, Colin Fox & Mario Santana-Cibrian (2015): Optimal Direction Gibbs Sampler
for Truncated Multivariate Normal Distributions, Communications in Statistics - Simulation and Computation, DOI:
10.1080/03610918.2015.1053926

To link to this article: http://dx.doi.org/10.1080/03610918.2015.1053926

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service
to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting,
typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of
the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained

in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any

form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions



http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2015.1053926&domain=pdf&date_stamp=2015-06-30
http://www.tandfonline.com/loi/lssp20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610918.2015.1053926
http://dx.doi.org/10.1080/03610918.2015.1053926
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [University of Otago] at 17:13 01 September 2015

ACCEPTED MANUSCRIPT

Optimal Direction Gibbs Sampler for Truncated
Multivariate Normal Distributions

J. Andies Christen
Centro de Investigadh en Materaticas, A.C. (CIMAT)
Guanajuato, Gto., Mexico
jac@cimat.mx

Colin Fox
Department of Physics, University of Otago
Dunedin, New Zealand
fox@physics.otago.ac.nz

Mario Santana-Cibrian
Centro de Investigadh en Materaticas, A.C. (CIMAT)
Guanajuato, Gto., Mexico
mariosc@cimat.mx

Abstract

Generalized Gibbs samplers simulate from any direction, not necessarily limited to the
coordinate directions of the parameters of the objective function. We study how to optimally
choose such directions in a random scan Gibbs sampler setting. We consider that optimal
directions will be those that minimize the Kullback-Leibler divergence of two Markov chain
Monte Carlo steps. Two distributions over direction are proposed for the multivariate Normal
objective function. The resulting algorithms are used to simulate from a truncated multivariate
Normal distribution, and the performance of our algorithms is compared with the performance

of two algorithms based on the Gibbs sampler.

Keywords: Bayesian inference; MCMC,; Gibbs sampler; Simulation, Truncated multivariate

Normal
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1 Introduction

The Gibbs sampler is a Markov chain Monte Carlo (MCMC) simulation algorithm that sequen-
tially samples from the conditional distributions over subspaces of the full target distribution space.
Traditionally, each subspace is chosen by selecting one variable in the target distribution and sim-
ulating from the corresponding “full conditional” distribution. The standard Gibbs sampler then
systematically samples from all full conditionals to create an irreducible Markov chain; this is the
algorithm presented to the Bayesian world in Gelfand and Smith (1990) that initiated the MCMC
boom in statistics, although MCMC was already developed in the 1970’s (Hastings, 1970; Peskun,
1973). The traditional Gibbs sampler may then be seen as choosing a canonical direction, i.e., se-
lecting a variable to move and simulating from the (full) conditional distribution along that direc-
tion. The standard Gibbs sampler only considers directions given by the basis chosen to represent
the objective distribution.

A natural question to ask is whether we may take any other direction in the Gibbs sampler and
certainly how then to decide which direction to take. Arbitrary directions may indeed be selected,
with a new point of the Markov chain chosen by simulating from the conditional distribution along
that direction (Liu, 2008). However, it is not clear how to choose such directions and what criterion
to use to optimize the resulting chain. Here we address this problem by trying to reduce the
dependence in the chain, thereby obtaining more quasi-independent samples with fewer iterations.
We use the mutual information (Cover and Thomas, 1991) between two consecutive samples of
the Markov chain to measure dependence. To our knowledge, this is a score seldom used in this
context.

Our goal is to use the resulting algorithm to sample from a truncated multivariate Normal
(TMVN) distribution. This is an important task in many research areas in statistics such as
Bayesian Normal linear regression subject to linear inequality restrictions (Rodriguez-Yam et al.,

2004), censored data models (Gelfand et al., 1992), order restricted (or isotonic) regressions (Robert,
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1995), truncated multivariate probit models in market research (Yu and Tian, 2011), and so on.
TMVN sampling is also common in inverse problems, when estimating parameters in a stable sys-
tem of diferential equations leads to the linear problBm = y, but natural restrictions on the
parameter space, such as a positivity constraint O, result in a truncated multivariate Normal
posterior distribution (Calvetti et al., 2008; Kaipio and Somersalo, 2004).

There are several methods for sampling from a TMVN (Breslaw, 1994; Kotecha and Djuric,
1999; Damien and Walker, 2001; Robert, 1995; Yu and Tian, 2011). However, the most common
and easiest to implement methods are based on the Gibbs sampler. These methods work well in
many situations but may be very slow if we have high correlation as well as high dimensionality.
We will show that our algorithm is especially suited for thes@dilt cases.

The paper is organized as follows. In Section 2 we present the directional Gibbs sampler and
the optimality criterion. In Section 3 we present the proposed algorithm for the case where the
target distribution is a multivariate Normal (MVN) distribution. Section 4 proposes a variant of
the algorithm to sample from the TMVN. In section 5 the performance of the algorithms are eval-
uated in several examples and also compared with two existing Gibbs samplers. Finally, Section 6

presents a discussion of our results.

2 Generalized Gibbs sampler

Let 7 be the objective distribution, e.g. the posterior distribution of interest. X.et R" be a
random variable with density(x). The component-wise Gibbs sampler is a MCMC sampling

algorithm that simulates systematically or randomly from the conditional distributions

Fyox (%i1X<i) o m(X), (1)

where the notation

V—i = (Vl’ ey Vi—l’ Vi+l’ R Vn)
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represents then(— 1)-dimensional vector created by deleting tié entry from then-dimension
vectorv. Equation (1) represents univariate distributions that are the conditional distributions along
the axis for the basis chosen to represénthe so called “full conditional distributions” (Robert
and Casella, 2004).

Using (1), a Markov chaiix®, X, ... is created with transition kernel
Ki(x®, x) = e, (6 X 2165 = x8).

That is, thei-th kernel changes only theth coordinate by simulating from the full conditional

distribution fxx_, (-1x“). In random scan Gibbs, the complete transition kernel is defined by

K(x,y) = > wiKi(x, y),
i=1

for some weightsy, > 0, Y\, w, = 1; we prefer a random scan since it creates a reversible Markov
chain leading to many desirable analytical properties (Geyer, 1992).
The direction Gibbs sampler generalizes this idea by choosing a directid, ||e]| = 1, and

sampling from the conditional distribution along that direction. This can be written as
XD = xO 4 re,

where the lengthr € R has distribution proportional ta(x® + re) (Liu, 2008). It can be seen
that the transition kernel is in detailed balance withnd, by assuring-irreducibility, the Markov
chain hasr as ergodic distribution. The natural question to ask is how to chetseptimize the
convergence (mixing) of the Markov chain? Indeed, once irreducibility is assured, any chain will
have the correct ergodic distributianbut performance will depend on how dependent e

and XY. In this context, a convenient, although less known dependence measurepiatts
information I between random variablesandY (Cover and Thomas, 1991), which measures the

Kullback-Leibler divergence between the joint modgl, and the independent alternativgefy,
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that is,

- x4
I(Y, X)_fffy,x(y,x) log fy(y)fx(x)dXdy'

In our case, we hav¥ = X andY = X&*b, Assuming thaiX ~ &, we see thafy(y) = z(y) and

fv.x(y, X) = n1(x)K(x, y). Therefore, the mutual information above may be calculated as

K(X,y)
n(y)

(Y, X):ffn(x)K(x, y) log dydx. (2)

The idea is to choose directions for whiX %, X®) is minimized. Sincé is a Kullback-Leibler
divergence it is well defined; > 0 andl = 0 if and only if X®*Y and X© are independent, i.e.
fxy = fxfy a.s.. Finding directiong for which | is minimum will provide our optimization

criterion to obtain optimal direction Gibbs samplers.

3 The multivariate Normal case

In this section we will assumeto be a multivariate Normal distribution with mean column vector
p andn x n precisionmatrix A, which is the inverse of the variance-covariance matrix. This is a
case that lends itself to calculation IgX ¢, X©).

As explained in Section 2, given stateand directiore € R", ||€| = 1, the chain moves from
X® = xto

Y =X =x+re

wherer € R has probability density functiog proportional tar(x + re). That is,

g(rle, X) o« exp{—%(v +re)TA(v + re)}

wherev = x — u. After some algebra we see that

e’ Av
el Ae

rle, x ~ N(— ,eTAe)

in which theprecisionis e"Ae. By settinge = g, thei-th standard basis vector, one obtains
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Yi ~ N(ui — A AiZi(Xoi — pj), Ai) , which is the full conditional distribution for a multivariate
Normal distribution for entry, thus returning to the usual Gibbs sampler.

From this we see that the transition kernel corresponding to direei®n

e Ae\? e’ Ae e Av\?
x 9 = () exp{— 2 (04 S }1(y:x+eT(y—x)e).

Note thaty — x = reand, sincee’e = 1,r = e'(y - x), yis restricted to the ling = x + e'(y — X)e.

The mutual informations(X®?, X®) of the Gibbs sampler given directi@nas in (2) is then
(t+1) Oy — 1 T
(XY, X )_C+§Ioge Ae, 3)

whereC is a constant that does not dependeoibee Appendix A for further details of the calcu-

lation of l.

3.1 Choosing a set of directions

We need now a distributionfor directions to be chosen to generatdraaducible Gibbs sampler.
According to (3) the best direction is the one that minimi@es% loge” Ae. However, we cannot
simply choose the best direction as the resulting algorithm will not be irreducible and clearly we
will not be sampling fron. The chain must be-irreducible in order to have ergodic distribution

n. Indeed, if directions have distributidnwith support in the whole sphef#, then the resulting

Markov chain is irreducible with transition kernel given by

K(x,y) = f Ke(X, y)h(e)de.

An alternative will be to actually optimize over the set of all possible direction distributions
that generate irreducible chains. However, this formulation is far less convenient and involves
a complex optimization over a function space. Instead we follow a more heuristic approach, as

explained below.
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Kaufman and Smith (1998) argue that an optimal direction distribution is

h(e) «« sup {fﬂ(X+T€)dT£},

xeX,reR n(X+re)
in the sense of optimizing the geometric rate of convergence of the resulting Gibbs sampler. How-
ever, this only applies for with bounded supporX. Little else has been said regarding the
optimal directions for generalized Gibbs samplers. In general we cannot control th«jar'(—itré%fn

for unbounded support. However, this suggests choosing the direction distribution

h(e) « i%){ f (X + Te)dT}.

For the Normal case, it is notftiicult to see that

A Xp{_l(eTA(X—u))z}.

(27)(-D72(eT Ae)1/2 2 €Ae

fﬂ'(X + re)dr <
Maximizing overx, i.e. forx = u, we obtain the direction distribution
hi(€) o« (€T Ae) 2.

Note that one can minimizg(X™Y, X®) by maximizing exp-1o(X®?, X®)}. Then, choosing
hi(€) « (€T Ae)~2 will naturally choose directions with lowg(X®, X®), as can be seen from (3).

To sample fromhy, first note that

ha(€) o f (i + re)dr o (6" Ag) 2.

If we simulatee, from a multivariate Normal centred at the origin with precision matixand
takee = g,/|leyll, it is clear thate ~ h;. This density has the whole sphe§®as its support and
thus results in an ergodic chain. This justifies the choice of direction distribution made by Calvetti
et al. (2008).

We also entertain an alternative direction distribution, as follows. Take the direetesthe
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eigenvectors of the precision matrix soe € {e},e,,...,€,}. Thei-th direction will be selected
with probability proportional tol=°, where4; is the eigenvalue corresponding to fkth eigenvec-

tor,i=1,2,...,n andbis a random variable with distributioBetga, 8). Then
ho(e) = k(4)™®,

wherek = (Z{‘zl /li‘b)_l. Itis easy to see that directi@p corresponding to the lowest eigenvalye
of A is optimal. Note that
1
minle (XY, XO) = min{C + = log(e"H(x)e
lel=1 e( ) S 9(€"H(0e)

=C+ % log (mli_q{eTH(x)e})

1
=C+ > log A,.

The minimum is reached when= e,, the eigenvector associatedto

Since all eigenvectors have a positive probability of being chosen, and these form a bR$js for
the resulting direction Gibbs sampler will be ergodic. In this case the distributiemsafiscrete
which may result in computational advantages.

The resulting algorithm works as follows: XY = x,

e Propose a directioafromh;;i = 1,2.

e A(X — )

and precision, = e’ Ae.
e’ Ae P '

e Propose a lengthfrom aN(u,, 7;), with mearnu, = —
o SetX®D = x 4 re,

Note that so far nothing has been achieved since sampling from a multivariate Normal distri-
bution requires several samples from basically the same multivariate Normal. Rather, our aim is
to produce anféicient sampler when we have a truncated multivariate Normal, as explained in the

following.
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4 Truncated multivariate Normal distribution

Suppose we have a multivariate Normal distributiowith precision @ x n) matrix A and mean
vectoru but truncate the support tg € (a,b;), -0 < a < b < o,i = 1,...,n. The probability
density function of this TMVN can be written succinctly as
exp|~3(x - )" A(x - i)}
- .
I, exp{=3(x — p)TA(x — )} dx

Sampling from this TMVN can be done in a very simple way using a naive rejection algorithm:

(X)) =

sampling from the corresponding full multivariate Normal and then keep only the samples that
satisfyx € (a;, ), Vi € 1,...,n. However, this approach will be very ifigient in many cases.

Most of the available methods to sample from a TMVN are based on the Gibbs sampler.
Kotecha and Djuric (1999) use the fact that the full conditional distributions of a truncated mul-
tivariate Normal are truncated univariate Normal distributions. Hence Gibbs sampling requires
simulating from one-dimensional truncated Normal distributions which can be done in a very sim-
ple and dicient manner (Robert, 1995; Kotecha and Djuric, 1999). An interesting scheme is pre-
sented by Damien and Walker (2001) who use a slice sampler. This is essentially a Gibbs sampler
over a space augmented by one variable that turns the full conditional distributions into uniform
distributions.

In this section we will show that the algorithm presented in Section 3 may be used to sample
from the TMVN distribution with some minor changes.

As mentioned before, we can sample from the MVN by selecting a direetowl the step size
r which produceX®™? = x + re. Note that, for the TMVN, it is required that< x + re < b; then

a < X +re <bVie({l,...,n} This puts constraints overof the form

+<r<L Ve > 0,
&€ €

<28 Ve < 0.
&
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We do not need to worry about the case= 0 since it puts no restriction over since the-th

coordinate is not being changed. By taking (c, d), with

c:max({?:epo}u{bi;xi:e,<0}), (4)
d:min({?:e,<0}u{bi;xi:e,>0}), (5)

we guarantee that < X™V < b. Since we already know thee, x® follows a Normal distribution,

then the restrictiom € (c, d) implies thatr|e, x®, ¢, d follows a univariate truncated Normal (TN)
distribution.

The algorithm then proceeds as follows: AP = x,

e Propose adirectioafromh;, i =1,2.

e"A(X — p)

e Propose a length from a TN, 7, c,d), with meanu, = - S AG

, precisionr, =

e’ Ae, andc andd as in (4) and (5).
o SetX®D = x 4 re,

We will refer to this algorithm as ODG1 or ODG2 when the direction distribution uskgdas hy,
respectively.

More general constraints for the support of the TMVN may also be considered. For example,
the algorithm presented here can handle a set of linear inequality constraints that may be written
asBX < b. This is usually done by transforming the coordinates and changing the problem to
a < X' < b’; once the sampling is done, the inverse transformation is performed to return to the
original coordinates (Rodriguez-Yam et al., 2004). We will not discuss this case in this paper since

it reduces the problem to the one we are already studying.
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5 Examples

In this Section we will compare the algorithms ODG1 and ODG2 with the Gibbs samplers pre-
sented in Kotecha and Djuric (1999) and Damien and Walker (2001) using several instances of
TMVN. We will refer to the last two algorithms as KD and DW, respectively.

Consider an-dimensional TMVN with mean vectqr = (v/1/n,..., v/1/n) and precision ma-
trix A, forn = 2,5,10,20. The support will be restricted t¢ > O, i.e. all entries are positive.

It is important to note that the truncated support remains unbounded. We will not discuss how to
sample from a tightly bounded support since that would represent basically uniform sampling in a
complex domain, which is a substantiallyfdrent sampling problem.

The precision matrix is obtained # = PTA. Here,P is a random orthonormal matrix gen-
erated by using the QR decomposition af & n matrix of uniform random entries? represents
the orthonormal base of eigenvectorsfofFurthermoreA is a diagonal matrix of the eigenvalues
Ai = ;2. We set the standard deviations in each principal (eigen) directiﬂﬁ”t%): o = i7",

These represent decreasing standard deviations and are increasingly contrastingraases;
a = 0 results in an uncorrelated distribution. More contrasting standard deviations result in further
correlated distributions.

We start by analyzing the cage= 2 to present some basic results and then we will show how
these results extend to higher dimensions. We run 5000 iterations of each algorithm starting from
M, so there is no need for burn-in. Figure 1 shows the objective distributions 00, 5, 10, 20.

Black dots correspond to samples from the full bivariate Normal distribution while color dots
correspond to the samples from the TMVN obtained using each of the algorithms of interest. As
mentioned before, asincreases the correlation leads to morf@&dilt simulation regions. It can be
seen that algorithms ODG1 and ODG2 perform well in all cases. Moreover,#at0, algorithms

DW and KD have great éiculties in exploring the whole region of interest after 5000 iterations.

Fora = 20, both KD and DW generate samples concentrated in a small region only.
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Figure 2 shows the estimated autocorrelation of each component of the TMVN. Note that for
the caser = 0, algorithms KD and DW have less autocorrelation between samples than the ODG1
and ODG2, although the autocorrelation levels are still comparable. Howeverjraseases,
autocorrelation of KD and DW is far larger than for ODG1 and ODG2. This is the first indication
that ODG algorithms are mordfeient in cases where correlation is high.

Since the algorithmic complexity in each case $aient, in order to have a fair comparison we
want to calculate the average CPU-time needed to obtain a quasi-independent sample. We estimate
this by multiplying the average CPU time per iteration (CPUtime)bthe number of samples
needed to obtain one pseudo-independent sample. We often use the Integrated Autocorrelation
Time (IAT) (Geyer, 1992) to estimate However, the IAT is not fully studied for non-reversible
chains, which is the case for algorithms KD and DW since they are systematic Gibbs samplers.
Instead, we calculate theffiéctive Sample Size (ESS) Liu (2008) and estimai@s (n/ESS),
wherem is the length of the chain. Tables 1, 2, 3, 4 reports this quantities obtained from the
previous examples in the two-dimensional case.

Fora = 0, algorithms KD and DW are mordteient than ODG1 and ODG2 since CPUtirte
is lower. However, as correlation increases, algorithms ODG1 and ODG2 outperform the Gibbs
samplers, and in some cases by several orders of magnitude.

If we increase the dimensionality of the TMVN, the results are very similar. Tables 5, 6 and 7
show the values of CPUtime for dimensions = 5, 10, 20 respectively. For eaal) we chooser
such that the ratid,/1,, the maximum over the minimum eigenvalueAyfwhich is the condition
number of the precision matrix, has the fort for k = 0,5,10,20. For example, i = 5 we
geta = 0,5.4,10.8,215. This makes the examples in higher dimensions comparable with the
bivariate case.

For low correlations algorithms KD and DW are motéi@ent. It is important to notice that
their advantage inféciency does not come from their CPUtime, but from low correlation levels

between samples. Note also that both algorithms are systematic Gibbs samplers which makes
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CPUtime increase linearly with dimension. Nevertheless, even in the case of low correlations, the
ODG algorithms remain fairy comparable in performance.

However, when correlation increases the ODG algorithms become rffarierg and outper-
form the other choices. In this casdfi@ency comes from both the low levels of correlation

between samples and also from low CPUtime.

6 Discussion

Our optimal direction Gibbs sampler presents interesting characteristics in examples where stan-
dard Gibbs samplers are known to beffi@ent. One of the main advantages is that CPUtime per
iteration does not increase linearly with dimensionality. Also, the performance of our algorithms is
remarkable in cases where correlation is very high, which are theuli and very often interesting

cases of study.

The ODGL1 algorithm is more flexible since the direction distribution has the whole n-dimensional
sphere as support. However, ODG2 has a very good performance also. Note that we could simply
choose the parametbiof h, as fixed instead of random. However, if within one specific region of
the objective distribution there exists one (or few) very contrasting eigenvalues, directions may get
trapped in one “corridor” of the density, as it is the case for the TMVN with very high correlation.
By takingb ~ Betga, 8) we allow for the chance of selecting eigenvector directions with relative
low eigenvalues, thus permitting better mixing and avoiding possible traps. In fact, potentially
these parameters could be optimized to obtain even béfieeacy.

It is very difficult to parallelize an MCMC algorithm since it is sequential by construction.
Nevertheless, parallel computing can be use to accelerate some calculations inside the MCMC
steps, for example, those involved in likelihood evaluations (Tibbits et al., 2011). This could
be specially relevant in high dimensional examples. There are two specific steps where parallel

computing can be used in our algorithm: 1) to evaluate the bounds for length gigeented in
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equations (4) and (5); 2) to calculate proposal parameters, which in turn reduces to matrix algebra
parallelization (Demmel et al., 2013). With the increasing availability of multi processor machines
parallelizing could strongly improve the speed of our algorithm. We leave this for future research.

There is still work to be done regarding the optimal direction distributions. As explained in
Section 3.1, an alternative would be to optimize over all possible direction distributions or, for
example, optimize thexpectednutual information restricted to all possible direction distributions
that lead to irreducible chains. A challenging function optimization problem arises, defined with
a complex restriction, that may lead to very interesting practical and theoretical results. We leave
this investigation for future research.

There are several ideas to extend the actual ODG algorithms to non-Normal objective distri-
butions, for example by using a local Normal approximation to the target distribution. We have
experimented with this approach in some simple cases and seems to sample correctly from the ap-

propriate target distribution. Even so, this non-Gaussian ODG sampling is still work in progress.
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A Derivation of the mutual information

As mentioned in Section 2, the mutual information betw&esndY is given by

YX(y’ )
(Y, X)_fffyx(y,x) log () F (X )dxdy

We want to calculaté,(X®, XY, this is the mutual information betwedh= X = XO 4 re
and X = X® restricted to directiore. We supposeX ~ rx, wherer is a multivariate Normal
distribution with mean vectge and precision matripA.

In our casefy(y) = n(y) and fy x (Y, X) = 7(x)Ke(X, y), with

el T T 2
x = (55 exp{—efe(eT(y—x>+§TﬁZ)}1(y:x+eT(y—x)e>.

Therefore, the mutual information above can be calculated as

(Y, X) = ffzr(x)K(x y) log (( ))dydx (6)

Consider first the logarithmic term in (6), this is

Ke(X, y)

) % loge' Ae - % [Que x,y) = Qa(Y)]

log

where

C-= nTllong— —log|A|,
T T TA
Que x.y)=e Ae[e (y-x) + e,Ae]

QaY) = (Y- )" Ay - p).

From this we see that

[1og 5Dk y)dy =€ - 5 + 5 loge Ae 5 [ Qutyalx. )y

since f Qu(e X, Y)Ke(X, y)dy = 1. The integray Q2(y)Ke(X, y)dy may be calculated by transform-
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ing back tor since

f Qu)Ke(x. Y)dy = f (re—V)TAre - V)gu(r)dr.

After some algebra one sees that

v Aed Av

[ Qraesy=1- T A
Then
Ke(X. y) o~ o WVAedAV
flog ) Ke(X, y)dy = C + 2Ioge Ae > oas TV Av.

We need now to integrate with respectd@x). We note thatf vT Avr(x)dx = n. Moreover, the

expected value of a quadratic form is

E[zZ'RZ = tr(RX) + u" Ry,

Aed A

el Ae and

whereu andX are the mean vector and the variance-covariance mataxlatting R =

sinceE,(v) = 0 we obtain

e, |vAoae] = [ Rt
= e—lAetr(AeeAA—l)
= e(iAetr(Aeé)
= e,iAetr(eAé)
=1

Therefore

1 1
lo(XED, XDy =C+n- 5*5 log€ Ae

1
= Ci+ > log € Ae,
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whereC; =C+n- 1.
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ODG1

ODG2

KD

DW

ESS

1799.7

1937.5

5082.3

3587.6

T

2.8

2.6

1.0

1.4

CPUtime

0.00045

0.00032

0.00059

0.00013

CPUtimext

0.00125

0.00083

0.00058

0.00017
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Table 1: Hfective Sample Size (ESS) far = 0; number of samples needed to get one pseudo-
independent sampler and CPU time per iteration (CPUtime). Each quantity is the average
of 30 chains of 5000 iterations. CPUtixe represents the average time to obtain one pseudo-
independent sample. Numbers in bold indicate the miéisient algorithm.
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ODG1

ODG2

KD

DW

ESS

2100.1

1908.6

1440.9

1301.4

T

2.4

2.6

3.5

3.8

CPUtime

0.00045

0.00033

0.00059

0.00012

CPUtimext

0.00107

0.00087

0.00204

0.00048
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Table 2: Hfective Sample Size (ESS) far = 5; number of samples needed to get one pseudo-
independent sample)Yand CPU time per iteration (CPUtime). Each quantity is the average of 30
chains of 5000 iterations. CPUtirre represents the average time to get one pseudo-independent
sample. Numbers in bold indicate the moSiagent algorithm.
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ODG1

ODG2

KD

DW

ESS

2268.3

1932.1

55.0

49.8

T

2.2

2.6

90.1

100.5

CPUtime

0.00044

0.00033

0.00057

0.00012

CPUtimext

0.00094

0.00084

0.05201

0.01217
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Table 3: Hfective Sample Size (ESS) far= 10; number of samples needed to get one pseudo-
independent sample)Yand CPU time per iteration (CPUtime). Each quantity is the average of 30
chains of 5000 iterations. CPUtirre represents the average time to get one pseudo-independent
sample. Numbers in bold indicate the moSiagent algorithm.
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ODG1

ODG2

KD

DW

ESS

22351.9

1946.1

9.3

10.7

T

2.2

2.6

538.8

467.7

CPUtime

0.00043

0.00032

0.00056

0.00012

CPUtimext

0.00094

0.00082

0.30369

0.05584
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Table 4: Hfective Sample Size (ESS) far= 20; number of samples needed to get one pseudo-
independent sample)Yand CPU time per iteration (CPUtime). Each quantity is the average of 30
chains of 5000 iterations. CPUtirre represents the average time to get one pseudo-independent
sample. Numbers in bold indicate the moSiagent algorithm.
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ODG1

ODG2

KD

DW

a=0

0.00465

0.00671

0.00145

0.00046

a=54

0.00381

0.00313

0.00305

0.00071

a =108

0.00341

0.00271

0.03727

0.00789

a=215

0.00176

0.00261

0.50378

0.13555

Downloaded by [University of Otago] at 17:13 01 September 2015

Table 5: Average time to get one pseudo-independent sample (CPWjiifiee a five-dimensional
TMVN. Each quantity is the average of 30 chains of 5000 iterations. Numbers in bold indicate the
most dficient algorithm for a specific value of
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ODG1| ODG2| KD DW

a=0 |0.0142| 0.0129| 0.0031| 0.0011
a=7.5 |0.0112| 0.0084| 0.0049| 0.0013
a =15.1| 0.0058| 0.0062| 0.0776| 0.0178
a =30.1| 0.0036| 0.0061| 1.7291| 0.3784

Table 6: Average time to get one pseudo-independent sample (CPtHifoe a ten-dimensional
TMVN. Each quantity is the average of 30 chains of 5000 iterations. Numbers in bold indicate the
most dficient algorithm for a specific value of
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ODG1| ODG2| KD DW

a=0 | 0.0452| 0.0462| 0.0059| 0.0027
a=11.6| 0.0413] 0.0245| 0.0077| 0.0028
a=23.1|0.0259| 0.0151| 0.0569| 0.0166
a =46.3 | 0.0142| 0.0127| 3.5618| 0.9832

Table 7: Average time to get one pseudo-independent sample (CPUjifoe a 20-dimensional
TMVN. Each quantity is the average of 30 chains of 5000 iterations. Numbers in bold indicate the
most dficient algorithm for a specific value of
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Figure 1: Samples of the full bivariate Normal distribution (black dots) and the TMVN with algo-
rithms ODGL1 (blue), ODG2 (red), KD (green) and DW (orange) after 5000 iterations foe&),
b)a =5, ¢c)a = 10, and dx = 20.
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Figure 2: Estimated autocorrelation for the chains generated with algorithms ODG1 (blue), ODG2
(red), KD (green) and DW (orange) for a)= 0, b)a = 5, ¢)a = 10, and dy = 20. In examples
c¢) and d), the autocorrelation for ODG1 and ODG2 is almost O after lag five.
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